Computer Science Tripos, Part II: Denotational Semantics Supervision 1 Daniel Sääw¹ (dks28)

- 1. Are the following binary relations on the given sets preorders, partial orders or total orders?
 - (a) $\mathbb{N}, =$
 - (b) \mathbb{R}, \leq
 - (c) $\mathbb{R}, x \preceq y \iff \lfloor x \rfloor \leq \lfloor y \rfloor$
 - (d) the set given by the states of a fixed-size game-of-life board, and $x \leq y \stackrel{\text{def}}{\iff}$ the game of life will eventually reach state y after starting in state x.

(e) $\mathbb{C}, z \preceq w \iff \Re(z) \leq \Re(w) \land \Im(z) \leq \Im(w)$

- 2. Which of the following sequences are increasing with respect to their respective posets?
 - $a_n \coloneqq (1 + 1/n)^n$ in (\mathbb{Q}, \leq)
 - $b_n \coloneqq n^{-1}$ in (\mathbb{Q}, \geq)
 - $c_n \coloneqq n \text{ in } (\mathbb{N}, =)$
 - $d_n \coloneqq 1$ in (\mathbb{N}, \leq)
- 3. Which of the above sequences have a least upper bound, or supremum, in the given poset?
- 4. Which of the following are domains?
 - (a) $\mathbb{N}, =$
 - (b) \mathbb{R}, \leq
 - (c) $\mathbb{N} \cup \{\infty\}, x \preceq y \iff \exists a \in \mathbb{N} \cup \{\infty\}. x = a \cdot b$
 - (d) V (where G = (V, E) is a directed graph) with $u \preceq v \iff u \rightsquigarrow^* v$
- 5. How does the domain-theoretic notion of continuity relate to the standard analytic notion of continuity?
- 6. Consider Ω , the 'vertical' natural numbers. Are all monotone endofunctions on Ω continuous?
- 7. (Exercise Sheet Question 4(ii)). Let \mathbb{O} be the two-element domain given by $\perp \preceq \top$. Show that for any set X, the strict continuous functions $X_{\perp} \to \mathbb{O}$ are in 1-1-correspondence with the subsets of X, where X_{\perp} is the flat domain on X.
- 8. Show that an 'eventually constant' chain has a supremum. Deduce that every finite poset is a cpo. Then deduce that to show that given domains $(D, \preceq), (E, \sqsubseteq)$ (where D is finite) to show that f is continuous it suffices to show that f is monotone².
- 9. Let (D, \preceq) and (E, \sqsubseteq) be domains. We say that a continuous function $f \in D \to E$ is a *continuous isomorphism* if it is bijective and its inverse f^{-1} is also continuous.
 - (a) Show that for f to be a conitnuous isomorphism, it suffices for f to be continuous and bijective and for its inverse to be monotone.
 - (b) Find an example of a function that is continuous and bijective, but not a continuous isomorphism.
- 10. Let A, B be two countably infinite, disjoint sets and let c be an element of neither. Furthermore, consider bijections $e_A : A \to \mathbb{N}$ and $e_b : B \to \mathbb{N}$ and write $a_k = e_A^{-1}(k), b_k = e_B^{-1}(k)$. Define a binary relation $\preceq \subseteq D \times D$, where $D \coloneqq A \cup B \cup \{c\}$ as:

$$v \preceq w \stackrel{\text{def}}{\iff} \begin{cases} w = c & \text{or} \\ w = v \in B & \text{or} \\ e_A(v) \leq e_B(w) & \text{or} \\ e_A(v) \leq e_A(w) \end{cases}$$

¹the LAT_EX for my name is Daniel S\"a\"aw.

 $^{^{2}}$ I realise this may look small and insignificant but when I did this course this question turned into the standard result I used most frequently.

- (a) Show that (D, \preceq) is a domain.
- (b) Draw a Hasse diagram of this domain.
- (c) Let (E, \sqsubseteq) be a domain and let f, g be continuous functions in $D \to E$. Show that $\forall n.f(b_n) = g(b_n) \implies f(c) = g(c)$.
- 11. 1997 P7 Q5
- 12. Let Ω be **any set**. See the appendix for the standard definition of a measure space.
 - (a) Is a singular σ -algebra Σ over Ω a domain, when ordered by subset inclusion?
 - (b) Is the set of σ -algebras over Ω a domain, when ordered by subset inclusion?
 - (c) Is a measure $m : \Sigma \to \mathbb{R}_{\geq 0}$ a continuous function, where (Ω, Σ) is a measurable space, Σ is ordered by subset inclusion, and $\mathbb{R}_{>0}$ is ordered by \leq ?
 - (d) Is the set of measures defined on the power set of Ω a domain, when the ordering is given by $f \sqsubseteq_{\mu} g \iff \forall E \subseteq \Omega. f(E) \leq g(E)$?
 - (e) A probability space is just a measure space where the measure \mathbb{P} is defined to have $\mathbb{P}(\Omega) = 1$. Now, consider a slightly modified notion of a probability space given by objects $(\Omega, \Sigma, \mathbb{P}')$, where $(\Omega, \Sigma, \mathbb{P})$ is a valid probability space and \mathbb{P}' is a total function from the power set of Ω to the nonnegative reals, obtained by taking values

$$\mathbb{P}'(E) = \begin{cases} \mathbb{P}(E) & E \in \Sigma \\ 0 & E \notin \Sigma \end{cases}$$

Now, consider the set of objects $(\Omega, \Sigma, \mathbb{P}')$. Order this set as

$$(\Omega, \Sigma, \mathbb{P}') \preceq (\Omega, \Pi, \mathbb{Q}') \iff \Sigma \subseteq \Pi \land \mathbb{P}' \sqsubseteq_{\mu} \mathbb{Q}'.$$

Prove that this forms a domain, and provide the form of the lub of any chain in this domain.

Appendix.

A σ -algebra Σ over a set Ω is a collection of subsets of Ω (i.e. $\Sigma \subseteq \mathcal{P}(\Omega)$) that satisfies

- (I) $\Omega \in \Sigma$.
- (II) Σ is closed under countable union.
- (III) Σ is closed under relative complement, that is $\forall E \in \Sigma . \Omega \setminus E \in \Sigma$. So at least $\emptyset \in \Sigma$ by (I).

A measurable space (X, Σ) is just a set X equipped with a σ -algebra Σ over it.

A measure space (X, Σ, μ) is a measurable space (X, Σ) equipped with a measure; a function $\mu : \Sigma \to \mathbb{R}_{\geq 0}$ satisfying

- (I) σ -additivity: If $\forall n \neq m \in \mathbb{N}$. $E_n \cap E_m = \emptyset \wedge E = \bigcup_{n \in \mathbb{N}} E_n$, then $\mu(E) = \sum_{n \in \mathbb{N}} E_n$.
- (II) $\mu(\emptyset) = 0.$