Computer Science Tripos, Part II: Denotational Semantics Supervision 2 Daniel Sääw¹ (dks28)

Constructions on Domains

- 1. Suppose (D, \preceq) is a domain. Show that (\preceq, \sqsubseteq) is a domain if $(d, e) \sqsubseteq (d', e') \iff d \preceq d' \land e \preceq e'$.
- 2. Suppose X is a set. Show that $(X_{\perp}, =_{\perp})$ is a domain.
- 3. Suppose X is a set and that (D, \preceq) . Show that any monotone function $f: X_{\perp} \to D$ is continuous
- 4. Suppose D, E are CPOs.
 - (a) Show that the function CPO $D \rightarrow E$ as defined in the lecture notes is indeed a CPO.
 - (b) Justify the inference rule $\frac{f \bigsqcup_{D \to E} g \qquad x \bigsqcup_{D} y}{f(x) \bigsqcup_{E} g(y)}$.
 - (c) Find a necessary and sufficient condition on D, E for $D \to E$ to be a domain. (And prove that this is necessary and sufficient)
 - (d) Let D, E, F be domains. Recall the composition operator \circ which operates on $(E \to F) \times (D \to E)$. Show that $\circ \in (E \to F) \times (D \to E) \to (D \to F)$ is well-defined. Then show that it is continuous in each argument, and deduce that it is a continuous function.
- 5. Suppose X, Y are two sets and consider X_{\perp}, Y_{\perp} —the flat domains on these sets. Show that a function $f : X_{\perp} \to Y_{\perp}$ is continuous if and only if at least one of the following conditions holds:
 - (I) f is strict: $f(\perp_X) = \perp_Y$.
 - (II) f is constant: $\forall x \in X_{\perp}.f(x) = f(\perp_X).$
- 6. Consider a singleton $\{\top\}$ and the flat domain $\{\top\}_{\perp}$. Let Ω be the vertical natural numbers. Show that there is a bijection between $\Omega \to \{\top\}_{\perp}$ and Ω . Prove or disprove: There exists a continuous isomorphism between these two.

Scott Induction

- 7. 2002, Paper 8, Question 1
- 8. 2003, Paper 9, Question 14
- 9. 2004, Paper 9, Question 15
- 10. Let D, E be two domains. Suppose $f :\to E$ is monotone. Show that f is continuous if and only if for any admissible subset $S \subseteq E$, $f^{-1}S \subseteq D$ is admissible.
- 11. Let (D, \preceq) be some domain. Let $X \subseteq D$. Define the *admissible closure* ClX of X as

$$\mathrm{Cl} X \coloneqq \bigcap_{\substack{S \subseteq D: \\ X \subseteq S, \\ S \text{ adm.}}} S$$

- (a) Show that ClX is admissible.
- (b) Verify that ClX is the smallest admissible subset with respect to subset inclusion of D such that $ClX \supseteq X$.
- (c) Show that the (ClX, \preceq) is a domain and that the inclusion map $\iota : ClX \to D$ defined as $\iota := \lambda x \in ClX$. x is continuous and strict.
- (d) Let E be another domain and suppose that f, g are strict and continuous functions from D to E which agree on X (i.e. $\forall x \in X. f(x) = g(x)$). Show that f and g agree on ClX.
- (e) Let D be some domain and $X \subseteq D$. Define

$$Y \coloneqq X \cup \{\bot\} \cup \left\{\bigsqcup_{n} x_{n} : \langle x_{i} \rangle \text{ is some chain in } X.\right\}$$

Show that $Y \subseteq ClX$. Then give an example where $Y \neq ClX$.

¹the LAT_EXfor my name is Daniel S\"a\"aw.